Project Wizard

You can use the category filters given on the right sidebar to narrow down your search results.

OBsched

Rating: 
Your rating: None Average: 1 (2 votes)

Occupancy in certain hospital patient care units is impacted by procedure scheduling policies and practices. For example, intensive care unit occupancy is strongly related to open heart surgery schedules. Similarly, occupancy in obstetrical postpartum units is impacted by the daily number of scheduled labor inductions and cesarean sections. That was the motivation for this project.

OBsched is a set of optimization models and supporting software for exploring the relationship between patient scheduling and nursing unit occupancy in hospitals.

PyEEG

Rating: 
Your rating: None Average: 2 (4 votes)

A Python function library to extract EEG feature from EEG time series in standard Python and numpy data structure. Features include classical spectral analysis, entropies, fractal dimensions, DFA, inter-channel synchrony and order, etc.

WEKA

Rating: 
Your rating: None Average: 2.7 (3 votes)

Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.

Medical Imaging Interaction Toolkit (MITK)

Rating: 
Your rating: None Average: 4.8 (12 votes)

The Medical Imaging Interaction Toolkit (MITK) is a free open-source software system for development of interactive medical image processing software. MITK combines the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) with an application framework. As a toolkit, MITK offers those features that are relevant for the development of interactive medical imaging software covered neither by ITK nor VTK.

Core features of the MITK platform:

    EGADSS

    Rating: 
    Your rating: None Average: 2.1 (11 votes)

    EGADSS (Evidence-based Guideline and Decision Support System) is an open source tool that is designed to work in conjunction with primary care Electronic Medical Record (EMR) systems to provide patient specific point of care reminders in order to aid physicians provide high quality care. EGADSS is designed as a stand alone system that would respond to requests from existing Electronic Medical Records such as Wolf, Med Access, and MedOffIS to provide patient specific clinical guidance based on its internal collection of guidelines.