Project Wizard

You can use the category filters given on the right sidebar to narrow down your search results.

The 'surveillance' R Package

Rating: 
No votes yet

The R-package ’surveillance’ is a framework for the development and the evaluation of outbreak detection algorithms in univariate and multivariate routine collected public health surveillance data. Hence, potential users are biostatisticians, epidemiologists and others working in applied infectious disease epidemiology. However, applications could just as well originate from environmetrics, reliability engineering, econometrics or social sciences.

QuickViewHL7

Rating: 
Your rating: None Average: 4.3 (4 votes)

HL7 file viewer, in tree-view format, with associated segment/field documentation. The latest release now includes editing, at all levels in the tree-view, e.g segment, field or component values. Purpose is for testing and bug-tracing HL7 communications.

CASE

Rating: 
No votes yet

The main goal of the Computer Assisted Search for Epidemics (CASE) project is to develop a reliable system that generates warnings when the number of reported cases of a particular infectious disease reaches a level that indicates an unusual or unexpected rate. The system is currently in use at the Swedish Institute for Infectious Disease Control (SMI). It performs daily surveillance using data obtained from the database to which all notifiable diseases are reported in Sweden.

EGADSS

Rating: 
Your rating: None Average: 1.9 (10 votes)

EGADSS (Evidence-based Guideline and Decision Support System) is an open source tool that is designed to work in conjunction with primary care Electronic Medical Record (EMR) systems to provide patient specific point of care reminders in order to aid physicians provide high quality care. EGADSS is designed as a stand alone system that would respond to requests from existing Electronic Medical Records such as Wolf, Med Access, and MedOffIS to provide patient specific clinical guidance based on its internal collection of guidelines.

GNU Octave

Rating: 
Your rating: None Average: 4.5 (2 votes)

GNU Octave is a high-level language, primarily intended for numerical computations. It provides a convenient command line interface for solving linear and nonlinear problems numerically, and for performing other numerical experiments using a language that is mostly compatible with Matlab. It may also be used as a batch-oriented language.

OBsched

Rating: 
No votes yet

Occupancy in certain hospital patient care units is impacted by procedure scheduling policies and practices. For example, intensive care unit occupancy is strongly related to open heart surgery schedules. Similarly, occupancy in obstetrical postpartum units is impacted by the daily number of scheduled labor inductions and cesarean sections. That was the motivation for this project.

OBsched is a set of optimization models and supporting software for exploring the relationship between patient scheduling and nursing unit occupancy in hospitals.

PyMVPA

Rating: 
Your rating: None Average: 4 (1 vote)

"PyMVPA is a Python module intended to ease pattern classification analyses of large datasets. In the neuroimaging contexts such analysis techniques are also known as decoding or MVPA analysis. PyMVPA provides high-level abstraction of typical processing steps and a number of implementations of some popular algorithms. While it is not limited to the neuroimaging domain, it is eminently suited for such datasets. PyMVPA is truly free software (in every respect) and additionally requires nothing but free-software to run."

PyEEG

Rating: 
Your rating: None Average: 2.3 (3 votes)

A Python function library to extract EEG feature from EEG time series in standard Python and numpy data structure. Features include classical spectral analysis, entropies, fractal dimensions, DFA, inter-channel synchrony and order, etc.

WEKA

Rating: 
Your rating: None Average: 3 (2 votes)

Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.

Pages