You are here

Project Wizard

You can use the category filters given on the right sidebar to narrow down your search results.

MRmap

Rating: 
Your rating: None Average: 3.2 (14 votes)

MRmap is a flexible software tool that enables T1, T2, and T2* mapping from source images of multiple types of pulse sequences (IR-prepared multi-image T1 mapping, Look-Locker/ TOMROP T1 mapping, MOLLI T1 mapping; single- and multi-echo T2/ T2* mapping).

MRmap is a pure research tool and is not intended for any diagnostic or clinical use.

C# ECG Toolkit

Rating: 
Your rating: None Average: 2.5 (17 votes)

C# ECG Toolkit is an open source software toolkit to convert, view and print electrocardiograms. The toolkit is developed using C# .NET 1.1 & 2.0. Support for ECG formats: SCP-ECG, DICOM and HL7 aECG.

JULIDE

Rating: 
No votes yet

JULIDE is a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections.

Brainstorm

Rating: 
Your rating: None Average: 1 (18 votes)

Brainstorm is a collaborative open-source Matlab application dedicated to magnetoencephalography (MEG) and electroencephalography(EEG) data visualization, processing and cortical source estimation.
The intention is to make a comprehensive set of tools available to the scientific community involved in MEG/EEG experimental research.
For physicians and researchers, the interest of this software package resides in its rich and intuitive graphic interface, which does not require any programming knowledge.

MediPy

Rating: 
Your rating: None Average: 3.2 (5 votes)

MediPy is a cross-platform software (Windows, Linux, Mac OS), dedicated to the visualization and processing aspects of medical imaging. It is targeted at both physicians and researchers, being both user-friendly and easy to extend. Physicians will benefit from the pre-programmed tasks (e.g. segmentation, registration, detection of lesions) and the possibility to record new tasks, tailoring the software to each user. The use of standard file formats (Analyze/Nifti, Dicom) allows to load image from many sources, as well as integrate to a PACS.

FrameWork for Software Production Line (FW4SPL)

Rating: 
Your rating: None Average: 3 (3 votes)

FW4SPL is a component-oriented architecture with the notion of role-based programming. FW4SPL consists of a set of cross-platform C++ libraries. For now, FW4SPL focuses on the problem of medical images processing and visualization.

STIR

Rating: 
No votes yet

STIR is Open Source software for use in tomographic imaging. Its aim is to provide a Multi-Platform Object-Oriented framework for all data manipulations in tomographic imaging. Currently, the emphasis is on (iterative) image reconstruction in PET, but other application areas and imaging modalities can and might be added.

STIR is the successor of the PARAPET software library which was the result of a (European Union funded) collaboration between 6 different partners (see Credits).

Medical Imaging Interaction Toolkit (MITK)

Rating: 
Your rating: None Average: 4.8 (12 votes)

The Medical Imaging Interaction Toolkit (MITK) is a free open-source software system for development of interactive medical image processing software. MITK combines the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) with an application framework. As a toolkit, MITK offers those features that are relevant for the development of interactive medical imaging software covered neither by ITK nor VTK.

Core features of the MITK platform:

dicompyler

Rating: 
Your rating: None Average: 3.8 (9 votes)

dicompyler is an extensible, fully open source radiation therapy research platform based on the DICOM standard. It also functions as a cross-platform viewer for DICOM and DICOM RT objects. dicompyler is written in Python and is built on pydicom, wxPython, PIL, and matplotlib and runs on Windows, Mac OS X and Linux.

GIMIAS

Rating: 
Your rating: None Average: 2.4 (8 votes)

GIMIAS is a workflow-oriented environment for solving advanced biomedical image computing and individualized simulation problems, which is extensible through the development of problem-specific plug-ins. In addition, GIMIAS provides an open source framework for efficient development of research and clinical software prototypes integrating contributions from the Physiome community while allowing business-friendly technology transfer and commercial product development.

GIMIAS suites are collections of prototypes that build a complete platform for one or more clinical applications.

Pages