You are here

Project Wizard

You can use the category filters given on the right sidebar to narrow down your search results.

dicompyler

Rating: 
Your rating: None Average: 3.8 (9 votes)

dicompyler is an extensible, fully open source radiation therapy research platform based on the DICOM standard. It also functions as a cross-platform viewer for DICOM and DICOM RT objects. dicompyler is written in Python and is built on pydicom, wxPython, PIL, and matplotlib and runs on Windows, Mac OS X and Linux.

GIMIAS

Rating: 
Your rating: None Average: 2.4 (8 votes)

GIMIAS is a workflow-oriented environment for solving advanced biomedical image computing and individualized simulation problems, which is extensible through the development of problem-specific plug-ins. In addition, GIMIAS provides an open source framework for efficient development of research and clinical software prototypes integrating contributions from the Physiome community while allowing business-friendly technology transfer and commercial product development.

GIMIAS suites are collections of prototypes that build a complete platform for one or more clinical applications.

MeVisLab

Rating: 
Your rating: None Average: 4.5 (4 votes)

MeVisLab represents a platform for image processing research and development with a focus on medical imaging. It allows fast integration and testing of new algorithms and the development of application prototypes that can be used in clinical environments.

DCMTK - DICOM Toolkit

Rating: 
Your rating: None Average: 4 (32 votes)

DCMTK is a collection of libraries and applications implementing large parts the DICOM standard. It includes software for examining, constructing and converting DICOM image files, handling offline media, sending and receiving images over a network connection, as well as demonstrative image storage and worklist servers. DCMTK is is written in a mixture of ANSI C and C++.

SIVIC

Rating: 
Your rating: None Average: 3.6 (5 votes)

Spectroscopic Image Visualization and Computing (SIVIC) is an open-source, standards-based software framework and application suite for processing and visualization of DICOM MR Spectroscopy data. Through the use of DICOM, SIVIC aims to facilitate the application of MRS in medical imaging studies.

DeVIDE

Rating: 
Your rating: None Average: 4 (3 votes)

DeVIDE, or the Delft Visualisation and Image processing Development Environment, is a cross-platform software framework for the rapid prototyping, testing and deployment of visualisation and image processing algorithms. The software was developed within the Visualisation group. DeVIDE's primary (and currently only) front-end is a data-flow boxes-and-lines network editor. In this regard, it is very similar to AVS, OpenDX, Khoros or VISSION. DeVIDE integrates functionality from libraries such as VTK, ITK, GDCM, DCMTK, numpy and matplotlib. It is being very actively developed.

Ogles2

Rating: 
No votes yet

Ogles2 is an interactive slice and volume visualization and analysis tool based on Open Inventor / Coin3D. Ogles2 allows for reproducing the workflow of frame based stereotactic neurosurgery. In the long run it strives for being an open source stereotactic planning and analysis system. Ogles2 is NOT APPROVED FOR CLINICAL USE.

FSL

Rating: 
Your rating: None Average: 2.4 (8 votes)

FMRIB Software Library (FSL) is a comprehensive library of analysis tools for FMRI, MRI and DTI brain imaging data. FSL is written mainly by members of the Analysis Group, FMRIB, Oxford, UK. FSL runs on Apple and PCs (Linux and Windows), and is very easy to install. Most of the tools can be run both from the command line and as GUIs ("point-and-click" graphical user interfaces).

VTKEdge

Rating: 
Your rating: None Average: 3.7 (7 votes)

VTKEdge is no longer under active development, as its functionality has been incorporated into the Visualization Toolkit (VTK). The VTKEdge project created a library of advanced visualization and data processing techniques that complemented VTK. The custom modules to enable the use of these techniques within ParaView have also been incorporated into VTK.

Pages