Project Wizard

You can use the category filters given on the right sidebar to narrow down your search results.

Niftilib

Rating: 
Your rating: None Average: 5 (1 vote)

Niftilib is a set of i/o libraries for reading and writing files in the nifti-1 data format. nifti-1 is a binary file format for storing medical image data, e.g. magnetic resonance image (MRI) and functional MRI (fMRI) brain images.

Niftilib currently has C, Java, MATLAB, and Python libraries; we plan to add some MATLAB/mex interfaces to the C library in the not too distant future.

Nukak3D

Rating: 
Your rating: None Average: 1.4 (7 votes)

3D medical image platform for visualization and image processing. Segmentation with Levels sets. Surface reconstruction with marching Cubes, texture Mapping and Raycasting, DICOM support.

ClearCanvas

Rating: 
Your rating: None Average: 3.6 (37 votes)

ClearCanvas Workstation is our friendly, integrated RIS Client and DICOM PACS viewer. Because it is built on top of our highly extensible application framework, we expect that it will be appropriate not just for radiologists and clinicians, but also researchers who want to build new, cutting edge tools that can be easily "tried out" in a clinical environment. Like our other creations, ClearCanvas Worksation is free and open source.

Feature Highlights

  • Very easy to use, intuitive interface
  • Integration with ClearCanvas RIS

JULIDE

Rating: 
No votes yet

JULIDE is a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections.

ezDICOM

Rating: 
Your rating: None Average: 4.8 (4 votes)

ezDICOM is a medical viewer for MRI, CT and ultrasound images. It can read images from Analyze, DICOM, GE Genesis, Interfile, Siemens Magnetom, Siemens Somatom and NEMA formats. It also includes tools for converting medical images from proprietary format.

Ginkgo CADx

Rating: 
Your rating: None Average: 4 (4 votes)

Ginkgo CADx project started in 2009 with the aim to create an interactive, universal, homogeneous, open-source and cross-platform CADX environment.

Ginkgo is built over a huge amount of advanced technologies providing full abstraction of complex tasks as:

Open Source Picture Archiving and Communication System (OSPACS)

Rating: 
Your rating: None Average: 3.6 (19 votes)

Open Source Picture Archiving and Communication System (OSPACS) for storing and displaying medical image files. This is currently been used by the Institute of Women's Health (University College London) to archive ultrasound images from the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) and aims to store more than 100,000 DICOM files.

MIView

Rating: 
Your rating: None Average: 2 (6 votes)

MIView is an OpenGL based medical image viewer that contains useful tools such as a DICOM anonymizer and format conversion utility. MIView can read DICOM, Analyze/Nifti, and raster images, and can write Analyze/Nifti and raster images. It can also read and convert DICOM mosaic images. The main goal of MIView is to provide a platform to load any type of medical image and be able to view and manipulate the image. Volume rendering is the main type of advanced visualization that I'm trying to implement.

RT_Image

Rating: 
Your rating: None Average: 3.7 (3 votes)

RT_Image is an application developed in the Department of Radiation Oncology and MIPS at Stanford University. Coded in the Interactive Data Language (IDL, ITT Visual Information Solutions), RT_Image was originally designed in 2003 to generate radiotherapy target volumes from positron emission tomography (PET) datasets. It has since evolved to embody a variety of tools for visualizing, quantitating, and segmenting three-dimensional images.

FrameWork for Software Production Line (FW4SPL)

Rating: 
Your rating: None Average: 3 (3 votes)

FW4SPL is a component-oriented architecture with the notion of role-based programming. FW4SPL consists of a set of cross-platform C++ libraries. For now, FW4SPL focuses on the problem of medical images processing and visualization.

Pages