You are here

Project Wizard

You can use the category filters given on the right sidebar to narrow down your search results.

AMIDE

Rating: 
Your rating: None Average: 3.8 (11 votes)

Amide's a Medical Imaging Data Examiner (AMIDE) is a completely free tool for viewing, analysing, and registering volumetric medical imaging data sets. It's been written on top of GTK+ , and runs on any system that supports this toolkit (Linux, Windows, Mac OS X with fink, etc.).

DataViewer3D (DV3D)

Rating: 
Your rating: None Average: 3 (1 vote)

DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies.

Medical Imaging Interaction Toolkit (MITK)

Rating: 
Your rating: None Average: 4.8 (12 votes)

The Medical Imaging Interaction Toolkit (MITK) is a free open-source software system for development of interactive medical image processing software. MITK combines the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) with an application framework. As a toolkit, MITK offers those features that are relevant for the development of interactive medical imaging software covered neither by ITK nor VTK.

Core features of the MITK platform:

Nukak3D

Rating: 
Your rating: None Average: 1.4 (7 votes)

3D medical image platform for visualization and image processing. Segmentation with Levels sets. Surface reconstruction with marching Cubes, texture Mapping and Raycasting, DICOM support.

Vurtigo

Rating: 
Your rating: None Average: 3 (3 votes)

Vurtigo is a four-dimensional (3D + time) real-time visualization software for guiding cardiovascular interventions. It is designed to be part of a pipeline that can connect it to a magnetic resonance imaging (MRI) scanner, actively tracked catheters, and navigational devices.

Written in C++ under the GNU Lesser General Public License v2.1, Vurtigo features a plug-in based architecture, allowing developers to extend the software using an interface to manipulate objects within Vurtigo. The software runs on Win32, Linux and Mac OS X.

MediPy

Rating: 
Your rating: None Average: 3.2 (5 votes)

MediPy is a cross-platform software (Windows, Linux, Mac OS), dedicated to the visualization and processing aspects of medical imaging. It is targeted at both physicians and researchers, being both user-friendly and easy to extend. Physicians will benefit from the pre-programmed tasks (e.g. segmentation, registration, detection of lesions) and the possibility to record new tasks, tailoring the software to each user. The use of standard file formats (Analyze/Nifti, Dicom) allows to load image from many sources, as well as integrate to a PACS.

FrameWork for Software Production Line (FW4SPL)

Rating: 
Your rating: None Average: 3 (3 votes)

FW4SPL is a component-oriented architecture with the notion of role-based programming. FW4SPL consists of a set of cross-platform C++ libraries. For now, FW4SPL focuses on the problem of medical images processing and visualization.

RT_Image

Rating: 
Your rating: None Average: 4 (4 votes)

RT_Image is an application developed in the Department of Radiation Oncology and MIPS at Stanford University. Coded in the Interactive Data Language (IDL, ITT Visual Information Solutions), RT_Image was originally designed in 2003 to generate radiotherapy target volumes from positron emission tomography (PET) datasets. It has since evolved to embody a variety of tools for visualizing, quantitating, and segmenting three-dimensional images.

dicompyler

Rating: 
Your rating: None Average: 3.8 (9 votes)

dicompyler is an extensible, fully open source radiation therapy research platform based on the DICOM standard. It also functions as a cross-platform viewer for DICOM and DICOM RT objects. dicompyler is written in Python and is built on pydicom, wxPython, PIL, and matplotlib and runs on Windows, Mac OS X and Linux.

GIMIAS

Rating: 
Your rating: None Average: 2.4 (8 votes)

GIMIAS is a workflow-oriented environment for solving advanced biomedical image computing and individualized simulation problems, which is extensible through the development of problem-specific plug-ins. In addition, GIMIAS provides an open source framework for efficient development of research and clinical software prototypes integrating contributions from the Physiome community while allowing business-friendly technology transfer and commercial product development.

GIMIAS suites are collections of prototypes that build a complete platform for one or more clinical applications.

Pages